Neurochemical and motor changes in mice with combined mutations linked to Parkinson’s disease
نویسندگان
چکیده
Considerable evidence suggests that oxidative stress plays a role in the pathogenesis of Parkinson's disease (PD), the most prevalent neurodegenerative movement disorder. Reduced expression of aldehyde dehydrogenase-1 (ALDH1) and glutathione peroxidase-1 (GPX1), enzymes that function to detoxify aldehydes and hydroxyl radicals, respectively, has been reported in the substantia nigra of patients who died with PD. To determine whether deficiency in these two genes contributes to the pathogenesis of PD, mice were generated with homozygous null mutations of both Aldh1a1 (the murine homolog of ALDH1) and Gpx1 genes [knockout (KO) mice]. At 6 and 18 months of age, KO mice showed a significantly decreased latency to fall in the automated accelerating rotarod test and increased time to complete the pole test opamine levels were not altered; however, the dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) and the DOPAC/dopamine ratio were significantly reduced at 18 months of age. Proteins adducted with 4-hydroxynonenal, the end-product of lipid peroxidation, were increased in the. midbrain and striatum of KO mice at 6 and 18 months. In conclusion, dual mutations in Gpx1 and Aldh1a1 genes are associated with motor deficits and increased lipid peroxidation in adult mice.
منابع مشابه
Global gene expression analysis using microarray to study differential vulnerability to neurodegeneration
Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...
متن کاملGlobal gene expression analysis using microarray to study differential vulnerability to neurodegeneration
Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...
متن کاملThe effect of low dose amphetamine in rotenone-induced toxicity in a mice model of Parkinson’s disease
Objective(s): The effects of low dose amphetamine on oxidative stress and rotenone-induced neurotoxicity and liver injury were examined in vivo in a mice model of Parkinson’s disease. Materials and Methods: Male mice were treated with rotenone (1.5 mg/kg, every other day for two weeks, subcutaneously). Mice received either the vehicle or...
متن کاملThe effects of aqueous cinnamon bark extract and cinnamaldehyde on neurons of substantia nigra and behavioral impairment in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons in substantia nigra. In recent years, there have been interests in the role of the free radical damage in PD. Cinnamon and its derivative, cinnamaldehyde acts as powerful antioxidant and anti-inflammatory agents. This research focused on the effects of cinnamon extract and cinnamald...
متن کاملCinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017